Why Web Services?

Overview
Component-based programming has become more popular than ever. Hardly an application is built today that does not involve leveraging components in some form, usually from different vendors. As applications have grown more sophisticated, the need to leverage components distributed on remote machines has also grown.

An example of a component-based application is an end-to-end e-commerce solution. An e-commerce application residing on a Web farm needs to submit orders to a back-end Enterprise Resource Planning (ERP) application. In many cases, the ERP application resides on different hardware and might run on a different operating system.

The Microsoft Distributed Component Object Model (DCOM), a distributed object infrastructure that allows an application to invoke Component Object Model (COM) components installed on another server, has been ported to a number of non-Windows platforms. But DCOM has never gained wide acceptance on these platforms, so it is rarely used to facilitate communication between Windows and non-Windows computers. ERP software vendors often create components for the Windows platform that communicate with the back-end system via a proprietary protocol.

Some services leveraged by an e-commerce application might not reside within the datacenter at all. For example, if the e-commerce application accepts credit card payment for goods purchased by the customer, it must elicit the services of the merchant bank to process the customer’s credit card information. But for all practical purposes, DCOM and related technologies such as CORBA and Java RMI are limited to applications and components installed within the corporate datacenter. Two primary reasons for this are that by default these technologies leverage proprietary protocols and these protocols are inherently connection oriented.

Clients communicating with the server over the Internet face numerous potential barriers to communicating with the server. Security-conscious network administrators around the world have implemented corporate routers and firewalls to disallow practically every type of communication over the Internet. It often takes an act of God to get a network administrator to open ports beyond the bare minimum.

If you’re lucky enough to get a network administrator to open up the appropriate ports to support your service, chances are your clients will not be as fortunate. As a result, proprietary protocols such those used by DCOM, CORBA, and Java RMI are not practical for Internet scenarios.

The other problem, as I said, with these technologies is that they are inherently connection oriented and therefore cannot handle network interruptions gracefully. Because the Internet is not under your direct control, you cannot make any assumptions about the quality or reliability of the connection. If a network interruption occurs, the next call the client makes to the server might fail.

The connection-oriented nature of these technologies also makes it challenging to build the load-balanced infrastructures necessary to achieve high scalability. Once the connection between the client and the server is severed, you cannot simply route the next request to another server.

Developers have tried to overcome these limitations by leveraging a model called stateless programming, but they have had limited success because the technologies are fairly heavy and make it expensive to reestablish a connection with a remote object.

Because the processing of a customer’s credit card is accomplished by a remote server on the Internet, DCOM is not ideal for facilitating communication between the e-commerce client and the credit card processing server. As in an ERP solution, a third-party component is often installed within the client’s datacenter (in this case, by the credit card processing solution provider). This component serves as little more than a proxy that facilitates communication between the e-commerce software and the merchant bank via a proprietary protocol. Managed IT Services Markham

Do you see a pattern here? Because of the limitations of existing technologies in facilitating communication between computer systems, software vendors have often resorted to building their own infrastructure. This means resources that could have been used to add improved functionality to the ERP system or the credit card processing system have instead been devoted to writing proprietary network protocols.

In an effort to better support such Internet scenarios, Microsoft initially adopted the strategy of augmenting its existing technologies, including COM Internet Services (CIS), which allows you to establish a DCOM connection between the client and the remote component over port 80. For various reasons, CIS was not widely accepted.

It became clear that a new approach was needed. So Microsoft decided to address the problem from the bottom up. Let’s look at some of the requirements the solution had to meet in order to succeed.

 

    • Interoperability The remote service must be able to be consumed by clients on other platforms.

 

    • Internet friendliness The solution should work well for supporting clients that access the remote service from the Internet.

 

    • Strongly typed interfaces There should be no ambiguity about the type of data sent to and received from a remote service. Furthermore, datatypes defined by the remote service should map reasonably well to datatypes defined by most procedural programming languages.

 

  • Ability to leverage existing Internet standards The implementation of the remote service should leverage existing Internet standards as much as possible and avoid reinventing solutions to problems that have already been solved. A solution built on widely adopted Internet standards can leverage existing toolsets and products created for the technology.